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Abstract—The integration of electric motors into vari-
ous industrial and automotive applications emphasizes the
critical necessity for reliable performance and operational
efficiency. The advent of advanced digital technologies
offers opportunities for predictive maintenance strategies.
Digital Twins (DTs), mathematical models simulating a sys-
tem’s physical behavior in real-time, present a transforma-
tive approach to enhance real-time monitoring of critical
quantities, which is imperative to improve operational ef-
ficiency and minimize downtime. In this paper, we explore
the feasibility and efficacy of deploying real-time physics-
based DTs for condition monitoring in electric motor ap-
plications. Particularly, we focus on employing on-the-edge
DTs, implemented on low-power onboard microprocessors,
ensuring continuous communication with the physical as-
set for reliable real-time monitoring. The study applies DT
technology to a high-voltage high-density Electric Vehicle
(EV) motor, assessing its predictive capabilities in a real-
world scenario. Results showcase the potential of DTs
in revolutionizing condition monitoring, thereby meeting
the evolving operational and maintenance requirements of
contemporary electric motor systems.

Index Terms—Automotive, Digital Twins (DTs), Electric
Motors, Real-Time.

I. INTRODUCTION

THE increasing integration of electric motors in various in-
dustrial and automotive applications underscores the crit-

ical need for reliable performance and operational efficiency.
As electric motors become pivotal components in modern
systems, ensuring their continuous operation while minimizing
downtime due to faults has emerged as a paramount concern
[1]–[4].

In traditional approaches, fault detection and diagnosis
in electric motors have predominantly relied on post-fault
analysis or rudimentary monitoring techniques, often leading
to reactive maintenance practices and unexpected downtime.
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However, with the advent of advanced digital technologies
and the growing demand for predictive maintenance strategies,
there arises an opportunity to revolutionize the way we monitor
and manage electric motors [5], [6].

The evolution of electric motor applications demands a
paradigm shift in operational and maintenance strategies to
meet contemporary requirements efficiently. Conventional ap-
proaches in material research and hardware design, although
effective to a certain extent, are no longer adequate in address-
ing the evolving Operation and Maintenance (O&M) needs of
electric motor systems. The prevailing industrial practice often
involves overengineering components and collecting extensive
data, resulting in unsustainable costs and diminished profit
margins [7].

Amidst these challenges, the emergence of Digital Twins
(DTs), characterized as mathematical models capable of real-
time simulation of a system’s physical behavior, presents a
promising solution to revolutionize condition monitoring and
fault detection in electric motor systems [8], [9]. Analogous
to their application in power electronics [10], [11], DTs offer
a transformative approach to enhancing operational efficiency
and minimizing downtime by enabling proactive maintenance
strategies [12], [13]. The concept involves creating a virtual
model of the electric motor’s physical attributes and opera-
tional characteristics within the Motor Control Unit (MCU).
This DT allows for the emulation of the motor’s behavior
under various operating conditions and load scenarios in real-
time [2].

The significance of such a digital replica lies not only in its
ability to accurately simulate the motor’s performance but also
in its integration with sophisticated condition monitoring and
fault detection algorithms. By placing virtual sensors at critical
points within the motor, including rotor magnets, windings,
and bearings, the DT enables continuous monitoring of key
parameters indicative of impending faults or performance
degradation [1], [14].

One of the primary areas where DT technology can revolu-
tionize electric motor applications lies in thermal management
[15]–[17]. Temperature, particularly within critical compo-
nents such as rotor magnets, windings, and bearings, sig-
nificantly influences motor performance, safety, and lifespan.
However, traditional thermal management techniques often
rely on sensors placed away from the crucial components,
leading to latency and imprecise observations of temperature
dynamics [18].

Moreover, the state of the art, which is characterized by



oversensing, thermal network models with poor resolution
for real-time execution, and oversized control safety margins,
cannot meet the current market demand for high power density
applications, particularly prevalent in the automotive sector
[19], [20]. The reliance on these outdated methodologies ham-
pers the ability to achieve optimal performance and efficiency,
limiting the competitiveness of electric motor systems in the
rapidly evolving automotive market.

In this paper, we aim to analyze the feasibility and efficacy
of deploying real-time physics-based digital replicas for con-
dition monitoring. In contrast to the prevailing approach found
in most existing literature, which utilizes in-cloud DTs, this
paper focuses on employing on-the-edge DTs [1], [9]. In this
context, DTs are implemented on the low-power MCU already
available onboard. This approach ensures the continuous com-
munication of the DT with its corresponding physical asset, a
crucial aspect when monitoring critical quantities in real-time.
This shift in methodology holds significant importance as it
guarantees reliable and uninterrupted data exchange between
the DT and its associated physical asset, enhancing the efficacy
of real-time monitoring processes.

The remainder of this paper is organized as follows. In
Section II, the problem is discussed, and in Section III the
High Power Density EV motor is described, along with the
test bench adopted for the experiments. Section IV provides
a thorough description of the DT generation workflow, be-
ginning with the construction of the Finite Element Method
(FEM)-based high fidelity model and its augmentation with
State Observers. Then, in Section V, emphasis is placed on
avoiding the drift of the DT w.r.t. the manufactured physical
asset by augmenting the physics-based model with Data-
Driven Artificial Intelligence (AI)-based approaches. Finally,
Section VI presents and discusses the results of the developed
on-the-edge DT in terms of accuracy and computational cost,
while conclusions are drawn in Section VII.

II. PROBLEM STATEMENT

The relentless pursuit of higher power densities and cost
reductions in electric motor design to meet the ever-growing
demand presents a formidable challenge: the complexity of
thermal management. Overheating emerges as a critical issue,
often leading to electric motor failures. Such overheating can
stem from various factors, including insufficient cooling sys-
tems, elevated ambient temperatures, or prolonged operation
under heavy loads. This thermal stress not only compromises
the immediate performance of rare earth elements, resulting in
significant efficiency loss over time, but also accelerates the
degradation of crucial component materials like the insulation
film, potentially leading to short circuits or other electrical
faults within the motor [21].

Additionally, age and wear are inevitable factors in elec-
tromechanical devices, with high-voltage electric motors ex-
periencing gradual performance decline over time [22].

Addressing these challenges necessitates advancements in
control systems and temperature monitoring techniques. How-
ever, current state-of-the-art approaches rely on physical sen-
sors that cannot be feasibly implemented in critical areas, such

Fig. 1: EV motor rendering and sensor locations.

as rotor magnets and bearings. Moreover, existing temperature
estimation methods, typically based on thermal network mod-
els, lack the spatial resolution necessary for components with
complicated thermal behavior. Incorporating non-linearities,
uncertainties in boundary conditions, time-varying parame-
ters, and thermal exchange with fluids into thermal networks
presents significant challenges. Indeed, although it is possible
to add equivalent parameters in thermal networks, doing so
while maintaining a coherent physical interpretation without
resorting to a multiphysics model is particularly complex,
especially in contexts such as liquid cooling systems for
automotive motors [23].

The implementation of DT technology emerges as a promis-
ing solution to tackle these complex challenges. In this study,
it has been applied this cutting-edge technology to a high-
voltage Electric Vehicle (EV) motor. Utilizing a specialized
prototype sample and test bench setup, we have rigorously
assessed the performance of the DT. The aim is to demonstrate
its predictive capabilities in a real-world scenario.

III. TEST BENCH AND EV MOTOR PROTOTYPE SAMPLE

To objectively and experimentally validate the methodology
applied to the electric motor case, it was necessary to develop
a special prototype of a sensorized motor with thermocouples
integrated into the rotor at various depths. Specifically, the
rotor was axially and radially drilled, and the thermocouples
were positioned on the internal magnets, in the rotor iron core,
and on the shaft. To acquire the measurements, a wireless
transducer was designed and attached to the shaft. It collects
and transfers the real-time data required for model validation.
Other thermocouples were attached to the stator iron, the
casing, the windings, and the two stator end-windings. In
Fig.1, the positioning of four specific thermocouples can be
observed: two are in the end-windings, one is in the magnets,
and one is in the rotor iron. The test bench is composed in
this way to validate the model over a wide operating range,
verifying the performance at various speeds, load points in
Max Torque Per Ampere (MTPA) and Flux Weakening (FW),
and different flow rates and coolant temperatures. It consists



Fig. 2: Test bench provided for the study

of the motor under test, a master motor that can be controlled
in torque (in which case it acts as a brake) or imposes a speed
(thus acting as a motor), a torque meter that measures the
torque at the mechanical coupling between the two motors, two
inverters with separate control, and a cooling circuit regulated
by a chiller that controls the flow rates and temperature of
the coolant (water-glycol mixture) leaving it. In Fig.2, the test
bench just described can be observed, which was used for all
the tests analyzed subsequently in this paper.

IV. TWIN GENERATION WORKFLOW

A. High Fidelity Model
The model of the EV motor has an intrinsically multi-

physics nature since electromagnetic, thermal, and fluid dy-
namic effects must be considered to define the overall behavior
of the device. With the final objective of generating an on-the-
edge DT of the device for the real-time monitoring of critical
temperatures, dedicated modeling strategies have been used
to consider these three physics. In the following, these three
models are described.

1) Power Loss Model: An established approach for an-
alyzing power losses in electrical machines employs the
Electromagnetic Finite Element Analysis (FEA) [24], [25].
This technique involves creating a detailed 2D/3D model that
captures the geometry of the machine’s stator and rotor pole
pair, alongside an accurate representation of electromagnetic
material properties. By solving Maxwell’s equations numeri-
cally, it is possible to conduct multiple electromagnetic simu-
lations across the electrical period at different rated frequen-
cies, thereby obtaining the field distribution. Subsequent post-
processing of these electromagnetic solutions allow for the
estimation of fundamental losses in the copper windings, stator
iron, rotor iron, and magnets using various numerical methods.

Fig. 3: Schematic losses structure of the EM model.

These losses can be cataloged across a spectrum of operating
conditions to generate Look-Up tables. The tables account for
variables such as the amplitude and phase of current, rotational
speed, and temperature across the full operational range of the
electrical machines. In Fig. 3 it is shown the losses structure
developed for this study.

2) Thermal Model: The thermal model of the EV motor
must be capable of providing the dynamic evolution of the
temperature in the critical points shown in Fig. 1.

The inputs of the Thermal Model are the Power Losses
obtained from the EM model described in Section IV-A1 and
the velocity field of the coolant provided by the Fluid Dynamic
Model described in Section IV-A3. The thermal model is
described by the following well-known equation, i.e.,

ρcp
∂T

∂t
+ ρcpv · ∇T −∇ · k∇T = q, (1)

where ρ is the density, cp is the heat capacity at constant
pressure, T is the temperature, k is the thermal conductivity,
q is the power density, and v is the velocity field (which is
not zero only in the fluid region). The dependence w.r.t. the
position has been neglected for simplicity. Equation (1) is then
complemented by a convective boundary condition which is
valid on the border of the model (∂Ω), i.e.,

n · k∇T = h(Text − T ), (2)

where n is the unit normal vector of the boundary of the
motor, h is the convective coefficient, and Text is the external
temperature.

It is well known that the cooling conditions (i.e., the flow
rate ϕ and the inlet temperature Tinlet of the coolant fluid)
may change during the operation of the e-motor. Thus, such
dependence should be considered in the model. However, this
would require the fluid velocity map, v, to be time-varying.
Although theoretically possible, as thoroughly discussed in
Section IV-A3, it may result in a complex model, challenging



TABLE I: Material thermal properties

Material Thermal Specific
Conductivity Heat Density

W/(m K) J/(kg K) kg/m3

Stator Iron 40 434 7854
Rotor Iron 40 434 7854
Copper 401 385 8933
Permanent Magnet 10 500 7500
Aluminum 140 900 2680
Insulation 0.08 1100 1380
Shaft Iron 34 460 7850

to integrate on the edge for real-time execution. Therefore, the
advection term associated with the heat exchange between the
EV motor and the coolant fluid has been removed and replaced
with a time-varying equivalent convective condition, i.e.,

n · k∇T = hfluid(ϕ)(Tfluid(ϕ, Tinlet)− T ), (3)

where hfluid is the equivalent heat transfer coefficient which
depends on ϕ, and Tfluid is the temperature map of the fluid
which depends on ϕ and Tinlet.

To generate a dynamic numeric model of (1)-(3), FEM is
applied for the discretization. Thus, a computational model
of the EV motor is generated and a tetrahedral mesh is
constructed (see Fig. 4).

Since the FEM model must be manipulated to apply MOR
techniques (as will be described in Section IV-B), a proprietary
FEM code has been used. The model consists of about N =
1.2 · 106 mesh elements. Thus, the final discretized model can
be written as

M
dx

dt
+(K+H+Hf )x = Qpp+QcText+QfTfluid, (4)

where x is the array of nodal temperature of dimension N ,
M is the mass matrix, K is the stiffness matrix, H and Hf

are the stiffness matrices related to the convective boundary
conditions, p is the power loss array of dimension Np storing
the losses (in [W]) for each domain (see Section IV-A1), Qp

is the N×Np matrix which maps p into the rhs of the thermal
model, and Qc and Qf are the array mapping Text and Tfluid,
respectively, into the rhs of the thermal model related to the
convective boundary conditions.

The values of the material properties (i.e., density, heat
capacity, thermal conductivity) have been taken from data
sheets and data reported in the literature. Table I shows such
values.

Concerning the thermal model of the air-gap, to account
for the effect of the rotation speed on the heat exchange
between stator and rotor through the air gap, as proposed
by several works in the literature [26], an equivalent heat
transfer coefficient (which depends on the rotor speed) can
be introduced, i.e.,

hair gap =
Nu · k
Dh

, (5)

where Nu is the Nusselt number, Dh is the hydraulic di-
ameter [26], and k is the thermal conductivity of the air.
Then, since the air-gap is considered as a meshed domain
in the thermal model, an equivalent, speed-dependent, thermal

conductivity can be obtained from (5). However, this approach
leads to a parametric model that, although compatible with
the MOR strategies discussed in Section IV-B, would be too
computationally intensive for real-time on-the-edge execution
since one should handle a model with time-varying parameters.
Therefore, an average value of the equivalent thermal air-gap
conductivity has been selected, and its dependency on rotation
speed is accounted for as discussed in Section V.

3) Fluid Dynamics: The exchange of heat with the coolant
fluid strongly affects the thermal behavior of the system. When
it comes to modeling this phenomenon within the framework
of electric machines, at least two strategies emerge as viable
options, each with its advantages and limitations:

1) using Computational Fluid Dynamics (CFD) simulations
to obtain the velocity map v which is then inserted in
(1), resulting in the advection term. This approach allows
for high accuracy and physics realism. However, solving
CFD simulations is computationally complex, and the
insertion of the advection term in (1) make its solution
particularly challenging from the numerical point of view:
even fine meshes lead to Peclet number Pe > 1, which
results in large node-to-node oscillations. To remove such
oscillations, standard stabilization techniques (e.g., based
on Streamline Upwind Petrov Galerkin (SUPG) [27]) can
be adopted.

2) replacing the fluid with an equivalent convective bound-
ary condition, i.e., (3). At the cost of sacrificing some
physics realism, this solution significantly reduces the
model’s computational complexity.

In this work, since the final model must be compatible with
on-the-edge implementation and real-time execution, the sec-
ond approach was adopted in the final model but a simulation
campaign with CFD simulations based on the first approach
has been conducted to infer hfluid(ϕ) and Tfluid(ϕ) to be used
in (3). For the CFD simulations, the k−ω Reynolds-averaged
(RANS) turbulence model (where k is the kinetic energy and
ω is the specific dissipation rate) has been used:{

ρ∂k
∂t + ρ(v · ∇k) = Pk − ρβ∗kω +∇ · (µσ∗µT )∇k

ρ∂ω
∂t + ρ(v · ∇ω) = αω

kPk − ρβω2 +∇ · (µσµT )∇ω
.

(6)
The full definition of symbols in (6) is given in [28]. By
solving (6) for several flow rate conditions (i.e., by varying ϕ),
the velocity map as a function of the flow rate was obtained
i.e., v = v(ϕ).

From the simulation campaign, the following models for
hfluid and Tinlet have been synthesized as a trade-off between
accuracy and computational complexity:

hfluid ≈ 9725
( ϕ

ϕnom

)0.65

W/(m2K), (7)

Tfluid ≈ Tinlet
◦C, (8)

where ϕnom is the nominal flow rate. To avoid dealing with
a model with time-varying parameters, (7) has been replaced
with an average value, i.e., hfluid = 9725 W/(m2K), this
introduces an approximation that is treated in Section IV-C.



Fig. 4: Mesh of the the 3D FEM model. a) Frontal view. b) axial view. c) 3D view.

B. Model Order Reduction

The primary feature distinguishing a DT from a high-
fidelity model lies in its ability to be deployed either in
the cloud or on-edge hardware, facilitating real-time or even
faster-than-real-time execution. This enables a seamless data
exchange between the physical asset and its corresponding
DT. In this paper, the DT is specifically designed for real-
time monitoring of critical parameters. Relying solely on in-
cloud implementations may prove unreliable due to inevitable
communication delays. However, recent advancements in mi-
croprocessor technology offer a solution through on-chip DTs,
where digital replicas are directly integrated into the available
hardware on board.

Obviously, due to its large dimension, the high-fidelity
thermal model described in the previous section is not directly
compatible with the on-chip implementation. To solve this
problem, MOR techniques can be used [29], [30].

For the real-time monitoring of critical temperatures, the
FEM thermal model, i.e., (4), must be solved in real-time.
Thus, its dimension must be significantly reduced to allow
on-chip implementation. To do that, MOR strategies based
on, e.g., Balanced Truncation, Moment Matching, or Proper
Orthogonal Decomposition can be used. The interested reader
is referred to, e.g., [31] for more details about different
MOR strategies, which can be applied to both continuous and
discrete models. Regardless of the adopted technique, MOR
allows for projecting the original Full Order Model (FOM) (4)
into a reduced order space, i.e.,

Ê
dx̂

dt
= Âx̂+ B̂u

y = Ĉx̂
, (9)

where Ê, Â, B̂, and Ĉ have been obtained by writing
(4) in (descriptor) state space form and then projecting the
corresponding FOM matrices into the reduced order space. In
(9), x̂ is the reduced order state, i.e., x ≈ Vx̂, where V is
the projection basis function constructed by the adopted MOR

strategy. The projection matrix V has dimension N × Nr,
where Nr is the dimension of the reduced order space and
Nr ≪ N . y is instead the vector that stores the temperature of
interest. Since V has in general a limited number of columns
(i.e., a small reduced order space is sufficient to accurately
represent the dynamic of the quantity of interest stored in y),
the computational cost of solving the Reduced Order Model
(ROM) (9) is much smaller than the one required to solve the
FOM, making it compatible with on-the-edge implementation.
The ROM of the EV motor has been constructed by using
Moment Matching techniques [32], [33], leading to a ROM of
dimension Nr =22.

Finally, (9) is discretized in time by applying a backward
Euler scheme and it is written in (descriptor) state space form,
i.e.,

Êdxk = Âdxk−1 + B̂duk−1

yk = Ĉdx̂k

, (10)

where the subscript d indicates that the matrices are the ones
of the model discretized in time and the subscript k indicates
the time instant t = k∆t, with k = 0, · · · , NT , and ∆t =
100 ms.

It is worth noting that more advanced time-stepping tech-
niques may be applied to discretize (9). However, advanced
time-stepping techniques may not be compatible with the
final on-chip implementation of the DT. The backward Euler
scheme is instead simple enough to be implemented in a
standard microprocessor and, by choosing a small enough
value of ∆t, a good level of accuracy can be guaranteed.

C. State Observer
One of the key features of the DT is its real-time imple-

mentation. This allows the model to interact bidirectionally
with the actual device through measurements from real sensors
Tmeas implemented in the system and control actions from
the electric drive implemented in the MCU. This enables the
implementation of state-space observers such as the Kalman



Filter, Moving Horizon Estimator, Particle Filter, etc., which
are tasked with mitigating model uncertainties based on a
priori information about the confidence given to both the
model itself and the measurement system [2], [34].

In the specific case of the EV motor under test, an Aug-
mented Kalman Filter (AKF) was applied to the system in the
form of discrete reduced state-space. Specifically, the reduced
state was augmented with one new state variable: the inlet
temperature Tinlet of the coolant fluid. The reason for this
choice is primarily due to the prior information that this vari-
able is time-varying in the real system, and its measurement
is generally imprecise or sometimes absent. However, it is
an extremely important input variable for modeling the heat
exchange of the EV motor with the coolant fluid, as presented
in the previous sections. Furthermore, by acting on the value
of Tinlet it is even possible to compensate for uncertainties on
the value of flow rate ϕ that is also a time-varying quantity.

Therefore, the final augmented state system, which also
integrates the observer to be implemented in real-time, can
still be rewritten in discrete-time state-space form as follows
[35]:

Xk = AaugXk−1 +BaugUk

yk = CaugXk

, (11)

where:
• X = [x;Tinlet]
• U = [u;Tmeas]
• Aaug,Baug,Caug see [35] for the algebraic manipula-

tions details.

V. FROM MODEL-AS-DESIGNED TO
MODEL-AS-MANUFACTURED

A. Limitations of a Pure Physic-Based as Designed
Model

This section serves as one of the cornerstones regarding the
novelty of this research work because the concept of trans-
forming from an as-designed model to an as-manufactured
model is key to completing the definition of a DT [36]. A
model, no matter how complex and comprehensive, remains
a simplification and an approximate representation of reality
for the following main reasons in the specific case of the EV
motor under test:

1) Approximated geometry due to the bottleneck of mesh
size.

2) The partial differential equations of heat equation and
Navier-Stokes for the fluid require numerical methods
such as Finite Elements and Finite Volumes analysis to
be solved with a certain degree of approximation.

3) The parameters of these equations, i.e., material proper-
ties, are inherently affected by uncertainty.

4) MOR techniques cause approximation and are effective
only for linear or mildly non-linear problems, hence some
physical phenomena such as radiation are not considered
in the initial equations.

5) The uncertainty and variability of boundary conditions
make them difficult to model, leading to a significant
source of approximation.

Fig. 5: Hybrid Model Architecture (Physics Based and AI
Data-Driven Based).

6) Manufacturing errors, e.g., welding and stacking of stator
and rotor stacks, leave the motor’s unique fingerprint,
introducing a degree of uniqueness such that it is un-
thinkable to have a single model based solely on physics
capable of accurately representing all samples of motor
production.

7) Aging, wear, and degradation make material property
parameters time-varying, but the temporal evolution func-
tions to model these effects are unknown.

These inherent complexities highlight the need for a com-
prehensive approach that bridges the gap between the idealized
as-designed model and the reality of the as-manufactured
system, thereby embodying the essence of the DT concept
in addressing the intricacies of real-world electric motor
applications.

The proposed methodology for transforming an as-designed
model into an as-manufactured model is based on the utiliza-
tion of data, coupling a physical model with a data-driven
model capable of mitigating the uncertainties and approxi-
mations just mentioned. This hybrid architecture, combining
physics-based and data-driven approaches, aims to address the
inherent complexities of real-world electric motor systems. By
integrating such models within the MCU, this hybrid approach
becomes the standard for implementing real-time models,
providing enhanced accuracy and robustness in monitoring and
controlling electric motor systems.

B. Model Architecture
The topology proposed in Fig. 5 to mitigate various sources

of uncertainty and approximation involves the final reduced
model obtained through the procedures described in the
preceding sections and two Feed Forward Neural Networks
(FFNNs) [37]. The first FFNN is used to correct potential
uncertainties in the model inputs, such as incorrect distribution
of losses in various domains of the stator, windings, rotor,
and magnets, as well as potential uncertainties in boundary
conditions such as external ambient temperature. Meanwhile,
the second FFNN directly corrects the model output of inter-
est, thus mitigating all those intrinsic errors of the physics-
based model listed from items 1 to 4 in Section V-A. The
final model architecture is calibrated based on a substantially



reduced experimental dataset, thanks to the fact that much
of the system dynamics need not be inferred since it is
already present as intrinsic information from the physics-based
model. Additionally, thanks to the presence of the physics-
based model, the number of layers and the dimensionality
of the FFNNs can be substantially reduced compared to a
fully data-driven approach, thus maintaining a structure and
computational complexity suitable for real-time integration on
a microcontroller.

C. Calibration

Training FFNNs involves optimizing model parameters and
selecting methods to enhance predictive performance. Com-
mon techniques include gradient-based optimization such as
Stochastic Gradient Descent (SGD) and Adam [38], along
with backpropagation for efficient gradient computation. Reg-
ularization methods like L1-, L2-regularization, and dropout
are employed to prevent overfitting. PyTorch and TensorFlow
are prominent libraries for FFNN development. PyTorch,
known for its flexibility and dynamic computation graph,
offers extensive support for model building [39]. TensorFlow,
backed by Google Brain, provides a high-level API and tools
for deployment. Keras, integrated into TensorFlow, remains
a popular choice for its user-friendly interface. Training and
calibrating FFNNs require careful selection and application of
optimization algorithms, regularization techniques, and appro-
priate libraries. PyTorch and TensorFlow stand out as leading
frameworks due to their rich features, active communities, and
widespread adoption in both research and industry.

D. Validation

Generalization of the final model architecture is crucial for
ensuring robust and reliable performance in real-world applica-
tions. This is particularly significant when integrating physics-
based models with feedforward neural networks (FFNNs), as
it allows the model to capture underlying physical principles
while leveraging the flexibility of neural networks for complex
pattern recognition. Integrating physics-based models into
FFNN architectures enhances the interpretability and phys-
ical plausibility of the model predictions. By incorporating
domain knowledge and fundamental principles, these models
provide constraints that guide the learning process, promoting
better generalization to unseen data. Maintaining a certain
degree of physicality in the model architecture is essential to
prevent overfitting and increase reliability. Overfitting occurs
when the model learns to memorize training data rather than
capturing underlying patterns, leading to poor generalization.
By incorporating physics-based constraints, the model is less
likely to extrapolate erroneously and more capable of making
accurate predictions in diverse operating scenarios. To evaluate
the generalization capability of the final model architecture, it
is crucial to test its performance in operating scenarios never
seen during the training phase. This ensures that the model can
effectively extrapolate beyond the training data and provides
confidence in its reliability for real-world applications.

Fig. 6: Execution Time Measurement.

TABLE II: Continuous Operating Conditions

Test Current Current Speed
Id Iq ω
[A] [A] [rpm]

Calibration Set 1 (0:48000) -151 66 10000
Calibration Set 1 (48000:end) -133 84 8000
Calibration Set 2 (0:48000) -80 129 4000
Calibration Set 2 (48000:end) -89 138 2000
Calibration Set 3 (0:48000) -76 114 6000
Calibration Set 3 (48000:96000) -82 46 10000
Calibration Set 3 (96000:end) -45 55 8000
Validation Set (0:48000) -37 83 4000
Validation Set (48000:end) -37 83 2000

VI. RESULTS, DISCUSSION, AND ADDED VALUE

In this section, the results obtained from the calibration of
the DT described earlier and the validation tests to demonstrate
its reliability and accuracy are presented. The final state-space
model has 22 degrees of freedom (DoF), resulting in a state
matrix A of size 22×22. The two FFNNs each have 419
parameters, with 3 intermediate hidden layers consisting of 8,
12, and 8 neurons, respectively. The entire model architecture
is executed on an STM32-based evaluation board with an
execution time of 256.4 µs, as observed from the real-time
feasibility test depicted in Fig. 6. In Table II, the different
operating points of the various tests are shown. As can be
observed, various conditions were tested in terms of torque and
speed to observe different thermal loads in terms of absolute
value and distribution of losses in the various components, e.g.,
stator, rotor, and windings. The first three sets of data recorded
with the special prototype sample and used in the calibration
phase for the hybrid physics-based-data-driven model architec-
ture are shown in Fig. 7a, Fig. 7b, and Fig. 7c, respectively.
The post-calibration error is less than 1.5 ◦C across the entire
explored dynamics. A notable difference in dynamics can be
observed between the stator (liquid-cooled with a water-glycol
cooling circuit with a flow rate of 10 liters per minute and a
temperature of 50 ◦C) and the rotor insulated from air at the
air gap, which has a significantly larger thermal time constant



(a) Calibration Set 1. (b) Calibration Set 2.

(c) Calibration Set 3. (d) Validation Set.

Fig. 7: Calibration and validation sets.

compared to the stator. The validation test performed and
shown in Fig. 7d yields very accurate results, with a maximum
error of 2.5 ◦C across the entire range of tests conducted at a
working point never analyzed during training. This makes the
model extremely reliable throughout the machine’s operational
range, allowing it to be used for control purposes, especially
for managing power derating while considering magnet tem-
perature faithfully, thereby avoiding local demagnetization and
minimizing safety margins to maximize machine functionality.

Another very important case study, especially for automo-

tive applications, is the peak torque tests, crucial for one of the
most important KPIs in automotive, namely acceleration from
0 to 100 km/h. These stress tests require a high current value
on the stator, operating at predefined id and iq working points
depending on the set rotor speed. They are short-duration
tests, less than 100 s, to verify the maximum duration of the
peak torque that the motor can achieve and the consequent
thermal loads it can withstand. In Fig. 8, the tests used by
the model training algorithm to integrate extreme operating
points and learn their dynamics can be observed. In particular,



Fig. 8: Peak Torque Calibration Set. Note that, for the sake of
conciseness, 5 different tests are reported in this figure.

Fig. 9: Peak Torque Validation Set. Note that, for the sake of
conciseness, 2 different tests are reported in this figure.

five tests at different currents and speeds were used during
calibration, the details of the operating conditions of which are
reported in Table III. Regarding the validation of the model,
the operating points of maximum current were used precisely
to verify the reliability and degree of generalization obtained
from the final model architecture. In Fig. 9, it is possible to
observe the real-time estimation performance obtained, where
once again the metric on the maximum acceptable error (+/−

TABLE III: Peak Torque Operating Conditions

Test Current Current Speed
Id Iq ω
[A] [A] [rpm]

Calibration Set (0:92) -150 200 4000
Calibration Set (92:184) -150 200 2000
Calibration Set (184:276) -300 100 10000
Calibration Set (276:368) -350 100 8000
Calibration Set (368:end) -350 150 6000
Validation Set (0:92) -350 350 4000
Validation Set (92:end) -400 400 2000

2.5◦C) has been met. We can especially notice in these tests
the difference in stator and rotor dynamics, suggesting that,
especially for random on/off applications like automotive,
without a reliable model estimating the rotor temperature,
the control is completely blind, which is the main reason
why this technology can increase the control performance of
electric machines, significantly reducing the overly cautious
safety margins used to date in the state of the art for fear
of overheating the rotor and irreversibly compromising the
efficiency of the electric machine itself.

VII. CONCLUSIONS

This paper demonstrates the feasibility and effectiveness
of employing physics-based Digital Twins (DTs) to monitor
critical temperatures in High Power Density High EV Motors
in real-time. We extensively discuss the workflow for generat-
ing the physics-based model, emphasizing efforts to reduce
computational complexity without compromising fidelity to
enable real-time execution and on-the-edge implementation.
This facilitates seamless data exchange between the physical
asset and its corresponding DT. We leverage State Observers
and Artificial Intelligence (AI) Data-Driven augmentation to
mitigate DT drifting, ensuring high accuracy during real-time
operation.

Experimental results validate the model’s accuracy under
realistic conditions, including peak torque tests, where errors
smaller than 2.5◦C are achieved. Future research will explore
leveraging DTs to implement advanced and informed control
strategies.
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