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Abstract—The traditional approaches in material research
and hardware design are insufficient to address the evolving
Operation and Maintenance (O&M) demands in contemporary
power electronics. Overengineering and data acquisition practices
lead to unsustainable costs and reduced profit margins. Digital
Twins (DTs), defined as real-time simulation models of physical
systems, emerge as promising solutions to meet stringent O&M
requirements. In power electronics, DTs offer significant potential
in thermal management, crucial for control performance, safety,
and system lifespan. This paper aims to analyze the development of
computationally efficient and high-fidelity DTs tailored for power
electronics applications, emphasizing their predictive reliability of
critical temperatures. The proposed physics-based approach is en-
hanced by integrating data-driven Artificial Intelligence (AI)-based
techniques to achieve this goal. The predictive reliability of the DTs
produced through this workflow is then experimentally validated
for a power electronic converter designed for induction heating
applications. Experimental results show that the integration of
data-driven AI-based techniques allows for maintaining very high
predictive accuracy even when multiple semiconductor component
suppliers are considered for the same product, which is often the
case for industrial products. Additionally, by implementing and
executing the DT in a low-power microprocessor, the real-time
execution is demonstrated, affirming its practical applicability.

Index Terms—Digital Twins (DTs), Power Converters, Real-
Time, Physics-Based, Data-Driven, Artificial Intelligence (AI),
Virtual Thermal Sensing (VTS), edge computing.

I. INTRODUCTION

TRADITIONAL approaches in material research and hard-
ware design are no longer sufficient to meet the evolving

Operation and Maintenance (O&M) requirements of contem-
porary power electronics products and systems. The prevailing
industrial practice involves overengineering components and
acquiring extensive data, leading to unsustainable costs and
diminished profit margins.
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The emergence of Digital Twins (DTs), characterized as
mathematical models capable of real-time simulation of a
system’s physical behavior, stands out as the most promising
solution to address the increasingly stringent O&M demands in
the power electronics market [1]. The maturation of enabling
technologies that unify hardware and software has ushered
in a new era, focusing on two key performance indicators
(KPIs): enhancing maximum functionality through control
performance [2] and enabling more precise and effective
predictive maintenance through increased information [3].

Specifically within the domain of power electronics, the most
promising area for DT technology lies in thermal management
[4]–[6]. Temperature, particularly junction temperature (Tj),

significantly influences control performance, safety, costs,
efficiency, and system lifespan [7]–[12]. While manufacturers
invest in advanced materials (e.g., SiC, GaN) to maximize
power density and minimize losses, a critical challenge remains
in the thermal management of these modules [13]–[15].

Current thermal management relies on sensors like Negative-
Temperature-Coefficient (NTC) ones placed away from the
die junctions for engineering reasons, resulting in latency and
imprecise observations of junction temperature dynamics [16],
[17]. This complicates the implementation of high-performance
thermal management control by system manufacturers, who
are forced to adopt oversized safety margins, thereby flattening
the added value and competitive advantage of utilizing, for
example, SiC Mosfet-based modules over IGBTs ones.

Another critical reason for the importance of junction
temperature is aging models based on, e.g., physics-based
models or in situ thermal impedance spectroscopy, coveted by
power electronics system manufacturers for providing predictive
maintenance services, enhancing product safety, and optimizing
warranty periods [18]. Currently, the most accurate and reliable
aging models are in the hands of semiconductor module
manufacturers, performing power cycles (PC) and temperature
cycles (TC) to extract empirical and physics of failure aging
models [19]. These models estimate the remaining useful life
(RUL) of modules, classify major fault types (e.g., solder
junction wear, wire-bond lift-off, etc.), and depend on the
junction temperature variation in a cycle (∆Tj) [19].

Various methods exist for measuring junction temperature,
but they are rarely implemented in production [6]. Despite
module suppliers providing valuable aging models, system
builders struggle to utilize them due to the difficulties to
estimate junction temperature in industrial setting. Hence,
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real-time estimation of Tj becomes crucial. While literature
explores various real-time junction temperature estimation meth-
ods for power modules [20]–[25] based, e.g., on temperature-
sensitive electrical parameters (TSEPs) or temperature-sensitive
optical parameters (TSOPs), there lacks a structured and unified
methodology poised to become an industry standard, a funda-
mental piece in constructing a DT for thermal management
and predictive maintenance of power electronics systems.

When thermal sensing techniques must be avoided, the cur-
rent state-of-the-art for junction temperature estimation remains
thermal network models [18], with limitations, especially for
complex systems. Designing a thermal network model without
knowledge of the component geometry and without relying on
experimental data, i.e., without reverse engineering the power
module, is challenging. Some power module manufacturers
provide thermal models for Tj estimation, but coupling them
to the entire system and the heat exchange model proves
difficult. Thermal networks lose physicality since the heat
equation is not well represented by an equivalent lumped
circuit. High-resolution thermal networks compromise real-time
implementation, rendering them computationally burdensome.
Designing them is mostly a manual process, requiring expertise
that few engineers possess in companies. Certain simulation
software companies (e.g., Ansys, Siemens, Newtwen) are
investing in tools capable of reducing complex models like finite
element models (FEM) into Reduced Order Models (ROM)
[26]. These ROMs can be implemented on third-party hardware
platforms for real-time execution, striking a balance between
accuracy and computational complexity [27].

A DT transcends a real-time model estimating junction
temperature. It must adapt to changes such as different
operating conditions, the stochastic nature of real devices,
and manufacturing errors, exchanging data bidirectionally with
the real system through sensors. The DT can be used to take
control actions, predict scenarios, optimize control actions,
identify anomalies and hazardous conditions, and generate a
wealth of information to enhance future design and predictive
maintenance models [28]. In this paper, we intend to analyze
the entire workflow for constructing a DT capable of providing
the functionalities necessary to improve real-time control
performance and thermal management. It is important to note
that, in this paper, aging and degradation phenomena are not
addressed, as the primary focus is on real-time monitoring
of critical temperatures to support advanced thermal control
strategies, also dealing with the stochastic nature of electronic
components.

The remainder of the paper is organized as follows. In
Section II, the workflow for generating hybrid physics- and
data-driven Artificial Intelligence (AI)-based DT is described.
In particular, the electric, thermal, and fluid-dynamics modeling
is discussed in Section II-A. Model Order Reduction (MOR)
techniques to reduce the computational cost of the physics-
based models and allow their real-time execution are discussed
in Section II-B. AI-based techniques to improve the accuracy of
the models in working conditions are described in Section II-C,
while the on-chip implementation of the final DT is described
in Section II-D. The proposed approach is validated against
a power electronic converter designed for induction heating

applications in Section III and conclusions are given in
Section IV.

II. DIGITAL TWIN GENERATION PROCEDURE FOR POWER
ELECTRONICS COMPONENTS

In this section, a thorough discussion is conducted on the
principal constituents of a DT, encompassing its structure,
implementation methodologies, and operational paradigms.
Initially, the DT is founded solely upon the physics in-
formation about the constituent entity, comprising geomet-
ric specifications, material characteristics, and mathematical
models delineating its physical dynamics. Subsequent phases
necessitate the compression of this informational reservoir
to allow real-time execution of the model on a designated
microcontroller. To this end, the application of MOR techniques
is imperative, ensuring an optimal equilibrium between model
fidelity and computational exigency, particularly concerning
memory allocation and computational complexity inherent to
the microcontroller environment [29].

The key feature that sets a Digital Twin (DT) apart from
a high-fidelity model is its ability to be deployed on cloud
or edge hardware for real-time execution—or faster-than-real-
time execution when predictions are required. This capability
facilitates a dynamic exchange of information between the
physical asset (e.g., the power converter) and its corresponding
DT. Since, in this paper, DTs are aimed at the real-time
monitoring of critical quantities, in-cloud implementations
alone may not be a reliable solution, due to unavoidable
communication delays. Fortunately, the recent advancements
in microprocessor technology pave the way for on-chip DTs,
where the digital replicas are directly embedded in the onboard
available hardware.

Following the reduction process, incorporating a stochas-
tic element rooted in empirical data is essential to reduce
discrepancies between the physics model and real-world
phenomena. These discrepancies typically stem from uncer-
tainties in parameters, dynamic and time-evolving boundary
conditions, and approximations introduced by the reduction
strategies. The stochastic nature of electronic components is
further exacerbated by the shortage issues faced by industries,
making it essential to secure multiple semiconductor component
suppliers. However, this increases the variability of device
performance, making monitoring and control increasingly
challenging. In this study, three different suppliers of discrete
components were adopted. However, validating and certifying
firmware with three different DT systems, each tailored to
a different semiconductor module supplier, proves to be
cumbersome. Therefore, developing a single integrated model
that accurately and reliably represents a power electronic system
potentially employing components from various suppliers in
serial production poses a technological challenge.

Given the stochastic nature of electronic components pro-
duction described above, combining data-driven models with
physics-based ones creates a strong hybrid approach that
improves the accuracy and generalization of power electronic
device models [30], [31]. Upon deployment within a micro-
controller framework, the resultant hybrid model furnishes
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real-time insights of both quantitative and qualitative nature,
informing control strategies with critical information such
as the identification of temperature hot spots, often situated
within inaccessible points like die junctions, thermal exchange
dynamics with cooling system, and temporal temperature
prognostications. Moreover, the expansive repository of real-
time insights can be used to enhance analytical capabilities,
particularly concerning degradation and aging metrics, thereby
expediting the acquisition of a predictive maintenance model.

A. High Fidelity Models
The model of a Power Converter module has an intrinsically

multi-physics nature since, in general, electric, thermal, and
fluid dynamic effects must be considered to define the overall
behavior of the device. With the final objective of generating
an embeddable and thus computationally cheap DT of the
device for the real-time monitoring of critical quantities (e.g.,
temperature), dedicated modeling strategies must be used to
consider these three physics and the coupling between them.

1) Electric (Loss) Model: The Electric Loss model of the
power converter relies on either datasheet specifications or
experimental measurements. The methodology, as explicated in
[32], delineates a systematic approach to assess both switching
and conduction losses.

Conduction power losses are computed by directly multi-
plying the collector current (IC ) by the corresponding voltage
(UCE) from the datasheet, thereby determining PV,COND

depending on the current. Furthermore, the method’s advantage
lies in accurately approximating the loss function with second
order polynomial fitting.

Junction temperature dependency becomes paramount in
estimating losses dynamically varying with the component’s
temperature and, so, temperature-dependent coefficients can be
incorporated into the polynomials:

PV,COND(IC , Tj) = c · IC + d · I2C , (1)

where c and d are, in case of a 2nd order polynomial fitting:
• c(Tj) = c0 + c1 · Tj + c2 · T 2

j

• d(Tj) = d0 + d1 · Tj + d2 · T 2
j

with ci and di to be defined, see [32]. The accuracy increases
with a greater number of recorded operating temperatures,
allowing for a higher-order approximation.

Switching losses in power electronics are dependent on
variables such as current, junction temperature, operating
voltage, and switching frequency. An effective evaluation
procedure begins by extracting the total switching energy
(Etot = Eon + Eoff ) from referenced datasheets, and sub-
sequently, the power loss expression is derived from this
data. Then, these losses are systematically correlated with
the respective variables, employing a method similar to that
utilized for conduction losses. [32]

2) Thermal Model: The thermal model of a Power Converter
must be capable of providing the dynamic evolution of the
temperature in critical points of interest, e.g., the junction
temperature. The thermal model is described by the following
well-known advection–diffusion equation, i.e.,

ρcp
∂T

∂t
+ ρcpv · ∇T −∇ · k∇T = q, (2)

where ρ is the density, cp is the heat capacity at constant
pressure, T is the temperature, k is the thermal conductivity, q
is the power density, and v is the velocity field (which is not
zero only in the fluid region). Power losses, i.e., q, are obtained
from the Electric (Loss) Model described in Section II-A1 and
the velocity field v of the coolant (if any) is provided by the
Fluid Dynamic Model described in Section II-A3.

In (2), the dependence w.r.t. the position has been omitted
for simplicity. Equation (2) is then complemented by boundary
conditions valid on the border of the model (∂Ω), e.g., Dirichlet,
Neumann, or, more frequently used, convective condition, i.e.,

n · k∇T = h(Text − T ), (3)

where n is the unit normal vector of the boundary of
the motor, h is the convective coefficient, and Text is the
external/ambient temperature. Depending on the case, radiation
boundary conditions can be included too. However, considering
them makes the problem non-linear, and this is in general
avoided. The interested reader can refer to [33] for more details.

To generate a numeric dynamic model of (2) (including
boundary conditions), Finite Element Method (FEM) is the
most widely used approach. Thus, a computational model of
the Power Converter is generated and a mesh is constructed.
The discretized model can be finally written as [34]

M
dx

dt
+ (K+Kadv +H)x = Qpp+QcText, (4)

where M is the mass matrix, while K, Kadv, and H are
the stiffness matrices related to conductive, advective, and
convection terms, respectively. p is the power loss array of
dimension Np storing the losses (in [W]) for each domain (see
Section II-A1), Qp is the N ×Np matrix which maps p into
the rhs of the thermal model, and Qc is the array mapping the
external temperature Text into the rhs of the thermal model
related to the convective boundary condition.

When the device is liquid-cooled and therefore the advection
term is included, it is well known that advection-dominated
computational models such as the one in (4) are particularly
challenging from the numerical point of view: even fine meshes
lead to Peclet number Pe > 1, which results in large node
to node oscillations. To remove such oscillations, standard
stabilization techniques can be adopted (e.g., based on Stream-
line Upwind Petrov Galerkin (SUPG) [35]). Alternatively, one
can eliminate the advective term from the thermal model and
replace it with equivalent boundary conditions, specifically
convective boundary conditions featuring a substantially high
convective coefficient [36]. While this approach streamlines
the computational complexity of the model, it concurrently
compromises the model’s physics accuracy. Finally, (4) can be
recast into state-space (descriptor) form, i.e.,

E
dx

dt
= Ax+Bu

y = Cx
, (5)

where E = M, A = −(K + Kadv + H), B = [Qp,Qc],
and u = [p;Text] is the input vector. y is a vector storing the
temperature of interest and C is the corresponding matrix that
computes y from x. Equation (4) is recasted into (5) to allow
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using MOR approaches (described in the next paragraph) that
usually start from a state-space representation of the problem.

It is worth noting that a reduced-order thermal model can also
be derived from experimental data using data-driven approaches
such as Vector Fitting [37], where a state-space model is
constructed directly from the data. Alternatively, a circuit-
equivalent behavioral model can be employed, utilizing thermal
network representations like Foster or Cauer models [38].

Regarding offline computational costs, this approach can
be advantageous since no FEM model needs to be con-
structed, making it suitable for temperature monitoring without
considering correlations or requiring model parameterization.
However, adding these features would necessitate enforcing
physical constraints, which expert engineers can do with a
deep understanding of the device’s thermal behavior. Therefore,
depending on the specific application, both a FEM-based
approach with order reduction and a data-driven generation
of a reduced-order model are viable methods for creating a
reduced order thermal model.

3) Fluid Dynamic Model: Often, Power Converters for
high-power applications such as automotive ones have active
cooling systems to dissipate the heat generated, e.g., based on
forced fluid or air flows. Fluids allow to reach higher power
densities but generally require a more expensive and complex
system (pumps, filters, radiators), thus, when possible, the
forced-air solution is preferred. A computational fluid dynamics
(CFD) simulation is required to study the velocity and pressure
distribution in the fluid domain. Time domain simulations at
different flow rates generally can be carried out under the
following assumptions:

• in-compressible fluid flow: this simplification is true for
fluids and could be adopted also for gases when there are
mild pressure changes and temperature variations;

• turbulent flow: k − ω Reynolds-averaged (RANS) turbu-
lence model;

• wall functions with quadrangular fluid boundary mesh;
• P1 + P1 discretization of velocity and pressure;
• Streamline + crosswind diffusion numerical stabilization;

For instance, the k − ω formulation based on turbulent kinetic
energy k and specific dissipation rate ω can be used:{

ρ∂k
∂t + ρ(u · ∇k) = Pk − ρβ∗kω +∇ · (µσ∗µT∇k)

ρ∂ω
∂t + ρ(u · ∇ω) = αω

kPk − ρβω2 +∇ · (µσµT∇ω)
(6)

For the full definition of symbols, the reader is referred to [39].
It is worth mentioning that such simulations can result in high
computational effort since the formulation is nonlinear and
fine meshes are needed to achieve convergence. Because of
these complexities, a common simplified approach is to entirely
avoid the CFD simulation by substituting the coolant/wall heat
exchange with an equivalent condition as previously mentioned
[36].

B. Model Order Reduction
Obviously, due to their large dimension, the high-fidelity

models described in the previous section are not directly
compatible with the on-chip implementation. MOR techniques
can be used to solve this problem.

While the Electric (Loss) model is already compatible
with the on-chip implementation, for the real-time monitoring
of critical quantities such as the junction temperature, the
discretized state-space thermal model, i.e., (5), must be solved
in real-time. A thermal model of a realistic Power Converter
module resulting from FEM discretization may have thousands
or even millions of unknowns. Thus, its dimensionality must
be reduced to allow on-chip implementation. To do that, MOR
strategies based, e.g., on Balanced Truncation [40]–[42],
Moment Matching [43], or Proper Orthogonal Decomposition
can be used. The interested reader is referred to, e.g., [44]
for more details about different MOR strategies, which can be
applied to both continuous or discrete models. Regardless of
the adopted technique, MOR allows for projecting the original
Full Order Model (FOM) (5) into a reduced order space, i.e.,

Ê
dx̂

dt
= Âx̂+ B̂u

y = Ĉx̂
, (7)

where Ê = V∗EV, Â = V∗AV, B̂ = V∗B, and Ĉ = CV
are obtained by projecting the corresponding FOM matrices
into the reduced order space, while x̂ is the reduced order state,
i.e., x ≈ Vx̂. V is the projection matrix constructed by the
adopted MOR strategy. The Reduced Order Model (7) can be
finally discretized in time by applying, e.g., a backward Euler
scheme. It is worth noting that more advanced time-stepping
techniques may be applied to discretize (7). However, advanced
time-stepping techniques may not be compatible with the final
on-chip implementation of the DT. The backward Euler scheme
is instead simple enough to be implemented in a standard
microprocessor and, by choosing a small enough value of the
time step, a good level of accuracy can be guaranteed.

Concerning the fluid dynamic model, it is worth noting
that the computational effort for this kind of simulation is
high, which poses challenges to obtaining a reduced CFD
model that can be computed in real-time. Fortunately, in
industrial applications, the flow rate is kept constant, or it
varies in a prescribed limited range. Thus, the velocity field v
(which is used for the advection term of the thermal model)
can be evaluated offline for a set of prescribed conditions
and the thermal model can be parameterized to consider
different cooling conditions. Of course, this may introduce
an unavoidable approximation but allows for avoiding solving
in real-time the CFD problem, which may be unfeasible for
on-chip implementation. It is worth noting that the literature
about MOR for CFD problems is vast and constantly growing
[45], [46]. However, due to the complex nature of the CFD

problems, incorporating fluid-dynamics ROMs in standard
microprocessors for real-time solutions is still a challenge.

C. From Model as Designed to Model as Manufactored

This section elucidates a pivotal aspect of the research,
pivotal in clarifying the essence of the DT concept within
power electronics. Initially, a model, no matter how complex
it is, remains an approximation of reality, encountering several
challenges in representing the complete dynamics of power
electronic systems [47]. These challenges include geometric
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Fig. 1: Hybrid Model Architecture.

approximations, limitations of numerical methods in solving
partial differential equations governing thermal and electric
phenomena, uncertainties in material properties, and the
approximations introduced by MOR techniques. Moreover,
manufacturing processes introduce unique characteristics into
each electronic component, further complicating model fidelity.
Additionally, aging, wear, and operational conditions make
material parameters time-varying, posing additional modeling
challenges. Finally, real power-electronics products often
integrate semiconductor components from multiple suppliers
to address supply shortages. Consequently, products that
incorporate semiconductor components from different suppliers
will exhibit varying thermal behaviors. However, the DT must
be unique (as tailoring a DT to specific semiconductor suppliers
would be problematic in production) and must provide highly
predictive accuracy for any product that includes semiconductor
components from different suppliers, i.e., the temperature
predicted by DT must closely align with the actual temperature
of the real component.

To address these complexities, a comprehensive methodology
is proposed, adopting physics-based and data-driven approaches.
This hybrid model architecture aims to enhance accuracy and
robustness in monitoring and controlling power electronic
systems, particularly when integrated within the control and
management units.

The proposed hybrid model architecture integrates a reduced
physics-based model with two Feed Forward Neural Networks
(FFNNs). The first FFNN serves to correct uncertainties in
the thermal model’s inputs, while the second FFNN corrects
the thermal model’s output, effectively mitigating errors in the
physics-based model.

Fig. 1 shows the scheme of the hybrid DT, which integrates
the physic-based and the AI-based models. As can be seen,
inputs of the two FFNNs are: the inputs of the electric
loss model, the (retarded) estimated output of the thermal
model, and the real-time measurements from NTC sensors
implemented in the system (TNTC). By incorporating TNTC

as an input to the hybrid DT, the model gains insight into
the stochastic behavior of the real-world component, such as
variations in semiconductor elements and boundary conditions.

Training FFNNs involves optimizing model parameters and
employing techniques such as gradient-based optimization,

regularization methods, and dropout to prevent overfitting.
Widely-used frameworks such as PyTorch and TensorFlow
provide a robust ecosystem for FFNN development, offering
flexibility, extensive support, and efficient computation. Careful
selection and application of optimization algorithms, regular-
ization techniques, and appropriate libraries are essential for
effective training and calibration of FFNNs tailored to power
electronic applications.

Ensuring the generalization capability of the final model
architecture is paramount for robust performance in real-
world power electronic applications. Integrating physics-based
models with FFNN architectures enhances interpretability and
promotes better generalization to unseen data by incorporating
domain knowledge and fundamental principles. Maintaining
physical constraints within the model architecture prevents
overfitting and increases reliability, enhancing confidence in
the model’s performance across diverse operating scenarios
and environmental conditions.

D. On Chip Implementation

The last step, which is crucial to defining the DT as such,
involves real-time implementation on a microcontroller, specifi-
cally on the hardware platform controlling the actual converter.
Once this step is achieved, the DT and its corresponding real
counterpart have the ability to exchange data and information in
a bidirectional flow through sensor readings and control actions.
Therefore, it is important to ensure the following functionalities:
synchronization of feedback and control actions with the
integration time step of the DT, which partly consists of a state-
space system to be integrated over time; stability properties
of the final DT architecture, e.g., checking the eigenvalues
of the state matrix; and finally, numerical conditioning of the
model matrices to avoid truncation and rounding errors when
implementing the model in a fixed-point 32-bit architecture,
for example.

III. CASE STUDY: POWER CONVERTER FOR INDUCTION
HEATING APPLICATIONS

A. Test Case Description

In this section, we describe the experiments conducted to
test and validate the effectiveness of the DT in representing the
physical behavior of a power electronic converter for induction
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Fig. 2: Power converter without cover. The withe dots indicate
the positions of the two NTC sensors.

Fig. 3: IR camera image.

heating applications in the home appliance sector. The converter
consists of a diode rectifier and two single-phase half-bridge
inverters connected to different coils. To verify accuracy, the
adopted measurement system utilized an infrared (IR) thermal
camera on the open device, as depicted in Fig. 2. Specifically,
the IR camera was used to observe temperature hotspots on
the IGBT cases, output pins, and heatsink near the soldering
points, providing a granular temperature map around the point
of interest, i.e., the junction temperature which cannot be
directly measured Fig. 3.

B. Applied Approach

For the specific application, a nominal conduction and
switching loss model, which averages the behaviors of different
datasheets of the components, has been designed as described
in Section. II-A1. The outputs of the loss model constitute
part of the inputs of the thermal model, specifically the heat
sources. The thermal model comprises a 3D finite element
thermal model that solves the heat equation neglecting the
radiation component, making MOR techniques more effective.

Fig. 4: Full Order Model. Temperature distribution in ◦C.

To reduce the finite element model, commercial software
produced by Newtwen® has been adopted, implementing MOR
techniques, as mentioned in the previous section, optimized for
finite element matrices, which are typically large, sparse, and
numerically ill-conditioned. The ROM is then implemented
inside a low-power microprocessor as described in the following
to validate its real-time feasibility.

The initial high-fidelity thermal model comprises approx-
imately 105 Degrees of Freedom (DoF), see Fig. 4, while
the final reduced order model (ROM) (obtained by using the
Moment Matching technique [43], [48] with a convergence
tolerance of 10−3 on the relative residual of the rhs of the
problem) comprises only 20 DoF and is capable of describing
the temperature at each node of the full order model (FOM)
mesh with a maximum error of 2.5◦C. The Moment Matching
approach constructs the projection matrix by applying the
Laplace transform to (5), i.e.,

sEX(s) = AX(s) +BU(s)

Y(s) = CX(s)
, (8)

where s ∈ C is the generalized frequency, and X, U, Y are
the Laplace transform of x(t), u(t), and y(t), respectively.
Then, the projection matrix V is constructed as

V = [m1
0, · · · ,mk

p, · · · ,mN
P ], (9)

where mk
p is the kp-th moment of (8) given as

mk
p = ((A− skE)−1E)p(A− skE)−1B, (10)

where p = 0, · · · , P indicates the order, and k = 1, · · · , N
the selected frequency (expansion point). However, a single
thermal model is not sufficient to define a DT capable of
accurately estimating the behavior of the real device, which
can incorporate different components and operate under various
load and boundary conditions, including varying cooling and
environmental conditions over time. To address this issue, the
physical model has been augmented with a data-driven model
consisting of two FFNNs with distinct functions. As depicted
in Fig. 1, the first neural network takes as input the input
of the loss model and the thermal dynamics of temperature
estimated by the thermal model at over 10 nodes of the mesh,
as well as the real-time temperature measured by two NTC
sensors implemented in the system. Its output is the correction
of the input vector for the thermal model (i.e., the power
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TABLE I: Experiments description

Experiment Set Power min/max Current-Frequency Power profile Supplier Figure Note
[cal/val/test] [W] [A/kHz] [step/multi-level] [1/2/3] - -

cal.1 4200 80 / 18 step 1 Fig. 5 -
cal.2 3600 72 / 21 step 1 Fig. 6 -
cal.3 3600 75 / 22 step 1 Fig. 7 -
cal.4 4200 80 / 18 step 2 Fig. 8 -
cal.5 4200 80 / 18 step 3 Fig. 9 -
cal.6 3600 72 / 21 step 3 Fig. 10 -

val.1 4200 80 / 18 step 1 Fig. 11 -
val.2 3600 75 / 22 step 2 Fig. 12 -

test.1 480/3200 * multi-level 1 Fig. 13 On/Off and different sequential power levels
test.2 480/3200 * multi-level 2 Fig. 14 On/Off profile at different power levels
test.3 480/3200 * multi-level 3 Fig. 15 Sequential power level and automatic control fan

losses), aiming to mitigate the errors of the loss model and
uncertainties of boundary conditions, such as cooling fan speed
and external temperature for convective heat exchange. In
addition, the second neural network (with the same input as
the first FFNN) serves to correct the final estimates of the
thermal model-FFNN1 architecture, mitigating model errors
stemming from material parameter uncertainties such as thermal
capacity and conductivity, as well as variance due to multiple
suppliers of power modules. Therefore, FFNN2 acts as the
data-driven discrepancy model that enhances the generalization
of the DT, maximizing its capability to represent the system
under study and analysis. This hybrid model architecture allows
for training the neural networks on a reduced dataset and,
importantly, designing them with a limited number of layers
and neurons, making them suitable for real-time implementation
on microcontrollers.

C. Model Accuracy

Several experiments with very different working conditions
have been done. Table I summarizes the relevant information
of all the experiments reported in this section. In particular, 8
experiments have been used for the optimization of the two
FFNNs, 6 of them for calibration (calibration set) and the
remaining two for the validation and the best model selection
(validation set). Three experiments have been used to finally
test the hybrid DT in different and unseen working conditions.

To show the necessity of the inclusion of the FFNNs in
the model, in Fig. 5–Fig. 15, the temperature estimation of
the physics-based model (loss model + thermal ROM) only
are included. Results show that introducing the data-driven
part (i.e., the FFNNs) is mandatory to reach good accuracy,
addressing the stochastic nature of the electric component.

The calibration dataset was generated from six different
tests at various current levels and load conditions for each
type of discrete component supplier. In Figs. 5 - 10, one can
observe the results of the calibration. The loss function used
is the Euclidean norm of the error between measurement and
estimation at each moment of acquisition during the heating
transient at three different geometric points corresponding to
the temperature hot spots on the IGBT cases and the positioning
of NTC sensors in the system. This allows for appropriately
modeling the thermal gradient in the area of interest to make

Fig. 5: Calibration Set: IGBT supplier 1, current-frequncy
operational load 80 A / 18 kHz.

Fig. 6: Calibration Set: IGBT supplier 1, current-frequency
operational load 72 A / 21 kHz.

Fig. 7: Calibration Set: IGBT supplier 1, current-frequency
operational load 75 A / 22 kHz.

the estimation of junction temperature as reliable as possible,
which is engineering-wise impossible to measure in the case
of discrete components.

Maintaining a certain degree of generalization in the model
architecture is essential to prevent overfitting and increase
reliability. Overfitting occurs when the model learns to mem-
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Fig. 8: Calibration Set: IGBT supplier 2, current-frequency
operational load 80 A / 18 kHz.

Fig. 9: Calibration Set: IGBT supplier 3, current-frequency
operational load 80 A / 18 kHz.

Fig. 10: Calibration Set: IGBT supplier 3, current-frequency
operational load 72 A / 21 kHz.

orize training data rather than capturing underlying patterns,
leading to poor generalization. By incorporating physics-based
constraints, the model is less likely to extrapolate erroneously
and more capable of making accurate predictions in diverse
operating scenarios. To evaluate the generalization capability
of the final model architecture, it is crucial to validate its
performance in operating scenarios never seen during the
calibration phase. This ensures that the model can effectively
extrapolate beyond the training data and provides confidence
in its reliability for real-world applications. For this purpose,
in Fig. 11 and Fig. 12 one can observe the two validation sets
at different operating conditions that have been used to check
the generality of the approach.

Figs. 5-12 show the high accuracy of the developed physics-
based data-driven augmented DT w.r.t. the measurements
collected from three power converters, each one equipped
with one of the three discrete components. Moreover, it is
worth noting that, because using three different IGBTs, the
temperature measured in the three power converters is very
different, discrepancies of about 20◦C can be spotted by

Fig. 11: Validation Set: IGBT supplier 1, current-frequency
operational load 80 A / 18 kHz.

Fig. 12: Validation Set: IGBT supplier 3, current-frequency
operational load 75 A / 22 kHz.

Fig. 13: Test Set: IGBT supplier 1, sequential multi-level
profile.

comparing results of, e.g., Fig. 5, Fig. 8, and Fig. 9. However,
for all of these conditions, the physics-based data-driven
augmented DT is in perfect agreement with measurements.

After the optimization phase several experiments have been
performed, to test the hybrid’s capability model in different
and unseen working performed. Among these experiments, the
results of three representative cases are reported in Figs. 13,
14, and 15, where, for clarity of presentation, only the IGBT
Top temperature measurements are shown, referring to the
component case temperature as these were directly observable
through the IR thermal camera measurements described in
Section III.

In particular, these experiments are performed by applying
complex working conditions, e.g., sequence of steps with
different power levels, on-off power profile with different
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Fig. 14: Test Set: IGBT supplier 1, on/off profile.

Fig. 15: Test Set: IGBT supplier 1, sequential multi-level profile
with automatic fan control.

power levels, and the activation of the automatic fan controller.
This allows us to test the performance of the hybrid DT with
industrially relevant power profiles and different boundary
conditions w.r.t. the ones accounted for during the optimization
phase. The results show a very high accuracy of the hybrid DT,
demonstrating that the proposed physic- and AI-based model
structure can be trained even with experiments coming solely
from simple scenarios without compromising its accuracy in
monitoring industrially relevant conditions.

D. Computational Effort

The offline computational cost of this approach includes
the effort required to construct the FEM model, perform its
subsequent reduction through Moment Matching, and train the
FFNNs. Computation were performed on a CPU Intel Core i7-
1355u, 1.7GHz. The FEM model has a size of 105 DoF and the
application of the Moment Matching reduction techniques leads
to a 20 DoF reduced order model (convergence tolerance of
10−3). The computation time to construct the FEM and generate

the ROM was about 20 min. Thus, the reduced state space
model is described by the following matrices: A = [20× 20],
B = [20× 5], C = [10× 20]. As is often the case, the human
effort and time required to set up the FEM model far exceed
the actual computational time needed to generate the ROM,
with the human effort being particularly difficult to quantify.
Alternatively, a data-driven approach (e.g., Vector Fitting or
training Foster or Cauer networks) can drastically reduce the
setup time, provided there is a solid understanding of the
component’s thermal behavior.

The total of the FFNNs parameters is 237 adopting Leaky
Rectified Linear Unit (ReLU) activation functions, suitable for
embedded implementation. The computation time needed for
the overall train and validation of the FFNNs was approxima-
tively 45 min.

Concerning the online computation time, the final hybrid
model architecture is executed on an STM32-based evaluation
board with an execution time of about 100 µs (65% of the
overall time is required for the computation of the ROM,
and the remaining 35% for the data-driven part, i.e., FFNNs)
and 5 kB memory footprint in total. The microcontroller task
implementing the DT operates with a cycle time of 10 ms,
which is sufficiently fast to track the thermal dynamics of the
component. The DT consumes only 1% of the microcontroller’s
computation time of the task where the DT is implemented
(100 us vs 10 ms of the task), making it fully compatible with
real-time execution requirements.

E. Discussion and Added Value

The real-time feasibility, accuracy, and level of generalization
achieved allow for the implementation of a virtual temperature
sensors system in production, which can be utilized for
enhancing power derating performance by finely modulating
switching frequency and current to maximize the product’s
state of function, i.e., increasing the functional burden of
components by reducing safety margins through continuous
monitoring of junction temperature. Moreover, although aging
and degradation phenomena are outside the scope of this
paper, it is worth mentioning that exploiting the increased
quantity and quality of relevant information unlocked by the
proposed hybrid DT (e.g., estimates in inaccessible points,
spatial temperature gradients, cross-play of data between virtual
and real sensors) provide useful information to develop aging
and degradation models and identify reliable patterns with
reduced costs and time. The temperature data obtained from
NTC sensors (i.e., TNTC) combined with DT predictions
can be leveraged to predict component failures, aging, and
degradation. However, addressing these phenomena requires
the use of empirical formulas and assumptions that must be
rigorously validated through experimental tests and dedicated
studies. These experiments are essential to establish correlations
between real and virtual sensor data with the actual occurrence
of failures, aging, and degradation. Finally, various techniques
should be explored to accurately and robustly identify these
phenomena. For instance, recent literature has proposed the
use of a particle swarm optimization algorithm coupled with a
dual extended Kalman filter for online monitoring of the state
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of health of power semiconductors [5]. However, with the rise
of AI-based methods, it is anticipated that new approaches will
continue to emerge.

IV. CONCLUSIONS

In this paper, a comprehensive approach to constructing
highly accurate and computationally efficient Digital Twins
(DTs) of power electronics applications for the real-time
monitoring of critical temperature has been proposed. Physics-
based models are the starting point of the proposed work-
flow, that are then reduced by using Model Order Reduction
techniques to make the DT compatible with real-time execution
on microprocessors. Finally, the real-time DT model is aug-
mented by using Data-Driven Artificial Intelligence (AI)-based
technique to improve its predictive reliability.

The effectiveness of the approach is verified using real-world
power electronic converters intended for induction heating
home appliance applications. These converters incorporate
IGBTs sourced from various suppliers. Due to industry-wide
supply shortages, it is common for manufacturers to utilize
components from different suppliers, resulting in potential vari-
ability between otherwise equivalent products. Consequently,
model-based monitoring becomes more complex. Nevertheless,
the physics-based AI-augmented DT developed through the
proposed approach exhibits excellent predictive reliability even
in such realistic scenarios. This underscores the maturity
and practical applicability of the proposed methodology in
addressing challenges encountered in industrial settings.
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